黄色视屏在线播放,桃色视频黄在线观看,国产在线观看99,一区二区三区精品免费,国产在线视频在线观看完整版,日韩国产片免费观看,亚洲精品久久久中文字幕九色,亚洲AV日韩AV综合影院,色伦97中文字幕

易教網-北京家教
當前城市:北京 [切換其它城市] 
www.eduease.com 請家教熱線:400-6789-353 010-64435636 010-64450797

易教網微信版微信版 APP下載
易教播報

歡迎您光臨易教網,感謝大家一直以來對易教網北京家教的大力支持和關注!我們將竭誠為您提供更優質便捷的服務,打造北京地區請家教,做家教,找家教的專業平臺,敬請致電:010-64436939

當前位置:家教網首頁 > 家庭教育 > 高中數學函數核心知識點精講

高中數學函數核心知識點精講

【來源:易教網 更新時間:2024-11-13
高中數學函數核心知識點精講

篇1:高中數學函數核心知識點精講

  高中數學函數核心知識點精講有哪些

  一、函數的定義域的常用求法:

  1、分式的分母不等于零;

  2、偶次方根的被開方數大于等于零;

  3、對數的真數大于零;

  4、指數函數和對數函數的底數大于零且不等于1;

  5、三角函數正切函數y=tanx中x≠kπ+π/2;

  6、如果函數是由實際意義確定的解析式,應依據自變量的實際意義確定其取值范圍。

  二、函數的解析式的常用求法:

  1、定義法;

  2、換元法;

  3、待定系數法;

  4、函數方程法;

  5、參數法;

  6、配方法

  三、函數的值域的常用求法:

  1、換元法;

  2、配方法;

  3、判別式法;

  4、幾何法;

  5、不等式法;

  6、單調性法;

  7、直接法

  四、函數的最值的常用求法:

  1、配方法;

  2、換元法;

  3、不等式法;

  4、幾何法;

  5、單調性法

  五、函數單調性的常用結論:

  1、若f(x),g(x)均為某區間上的增(減)函數,則f(x)+g(x)在這個區間上也為增(減)函數。

  2、若f(x)為增(減)函數,則-f(x)為減(增)函數。

  3、若f(x)與g(x)的單調性相同,則f[g(x)]是增函數;若f(x)與g(x)的單調性不同,則f[g(x)]是減函數。

  4、奇函數在對稱區間上的單調性相同,偶函數在對稱區間上的單調性相反。

  5、常用函數的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數圖象。

  六、函數奇偶性的常用結論:

  1、如果一個奇函數在x=0處有定義,則f(0)=0,如果一個函數y=f(x)既是奇函數又是偶函數,則f(x)=0(反之不成立)。

  2、兩個奇(偶)函數之和(差)為奇(偶)函數;之積(商)為偶函數。

  3、一個奇函數與一個偶函數的積(商)為奇函數。

  4、兩個函數y=f(u)和u=g(x)復合而成的函數,只要其中有一個是偶函數,那么該復合函數就是偶函數;當兩個函數都是奇函數時,該復合函數是奇函數。

  5、若函數f(x)的定義域關于原點對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點是:右端為一個奇函數和一個偶函數的和。

  2

  學好高中數學函數的方法

  1、課前預習教材。高中生想要學好數學,可以養成課前預習的好習慣。就是提前把老師第二天要講的內容預習一下,看看自己哪里能看懂,哪里不懂。這樣才能在老師講課的時候,帶著問題有針對性的去聽。

  2、上課專心聽講。很多高中生數學不好的原因,往往是因為沒有認真聽課。很多同學都認為老師講的已經懂了,就不認真聽了,但是在自己做題的時候,卻往往做不對題。上課專心聽講往往是比課下自己學習要效果更好。

  3、準備筆記本。高中生要準備一個筆記本,筆記本并不是讓你記公式和概念的,這些的東西書上都是有的,筆記本主要是要記老師給的例題。畢竟老師是很有經驗的,他們給的例題都是有一定的代表性的,把例題研究透對于數學成績的提高是有很大的助益的。

  3

  如何學好高中數學函數章節

  首先,在學習高中函數的時候,學生要掌握好各個函數的性質特點。函數的定義明確,還是比較容易理解的。學生們可以通過函數的性質去了解并掌握函數。很多高一學生開始學習函數的時候,可能有很多內容不懂,但是不要緊張,也不要自暴自棄。

  要堅持聽好每一節課,知識總是聚少成多,無論什么知識都是見微知著的,需要不停積累才能看出事物的本質。

  其次,在學習函數的時候,不要死記硬背。函數的基礎題型比較多,老師上課的時候往往會重點講解。學生要掌握并理解好重點題型,如果只是熟悉題型,并不理解的話,很難將函數知識融會貫通。函數的學習重點不在記憶,而在于理解。

  行百里者半九十,學習函數要有耐心,專心聽課,重視理解。只要持之以恒,就一定可以學好數學。

篇2:高中數學函數核心知識點精講

  高中數學函數核心知識點精講 一次函數

  一、定義與定義式

  自變量x和因變量y有如下關系:y=kx+b 則此時稱y是x的一次函數。

  【特別地,當b=0時,y是x的正比例函數。即:y=kx (k為常數,k≠0)】

  二、一次函數的性質

  1.y的變化值與對應的x的變化值成正比例,比值為k

  【即:y=kx+b (k為任意不為零的實數 b取任何實數)】

  2.當x=0時,b為函數在y軸上的截距。

  三、一次函數的圖像及性質

  1.作法與圖形:通過如下3個步驟

  (1)列表;

  (2)描點;

  (3)連線,可以作出一次函數的圖像——一條直線。

  因此,作一次函數的圖像只需知道2點,并連成直線即可。(通常找函數圖像與x軸和y軸的交點)

  2.性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。

  3.k,b與函數圖像所在象限:

  當k>0時,直線必通過一、三象限,y隨x的增大而增大;

  當k<0時,直線必通過二、四象限,y隨x的增大而減小。

  當b>0時,直線必通過一、二象限;

  當b=0時,直線通過原點

  當b<0時,直線必通過三、四象限。

  (特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。

  這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。)

  四、確定一次函數的表達式

  已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。

  (1)設一次函數的表達式(也叫解析式)為y=kx+b。

  (2)因為在一次函數上的任意一點P(x,y),都滿足等式y=kx+b。所以可以列出2個方程:y1=kx1+b ... ① 和y2=kx2+b …②

  (3)解這個二元一次方程,得到k,b的值。

  (4)最后得到一次函數的表達式。

  五、一次函數在生活中的應用

  1.當時間t一定,距離s是速度v的一次函數。s=vt。

  2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量S。g=S-ft。

  六、常用公式:(不全面,可以在書上找)

  1.求函數圖像的k值:(y1-y2)/(x1-x2)

  2.求與x軸平行線段的中點:|x1-x2|/2

  3.求與y軸平行線段的中點:|y1-y2|/2

  4.求任意線段的長:√(x1-x2)2+(y1-y2)2 (注:根號下(x1-x2)與(y1-y2)的平方和)

  二次函數

  一、定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關系:

  y=ax2+bx+c

  (a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,|a|還可以決定開口大小,|a|越大開口就越小,|a|越小開口就越大。)

  則稱y為x的二次函數。

  二次函數表達式的右邊通常為二次三項式。

  二、二次函數的三種表達式

  一般式:y=ax2+bx+c(a,b,c為常數,a≠0)

  頂點式:y=a(x-h)2+k [拋物線的頂點P(h,k)]

  交點式:y=a(x-x?)(x-x?) [僅限于與x軸有交點A(x?,0)和 B(x?,0)的拋物線]

  注:在3種形式的互相轉化中,有如下關系:

  h=-b/2ak=(4ac-b2)/4a x1,x2=(-b±√b2-4ac)/2a

篇3:高中數學函數核心知識點精講

篇3:高中數學函數核心知識點精講

  方法1、有良好的學習興趣

  兩千多年前孔子說過:“知之者不如好之者,好之者不如樂之者。”意思說,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中。“好”和“樂”就是愿意學,喜歡學,這就是興趣。興趣是最好的老師,有興趣才能產生愛好,愛好它就要去實踐它,達到樂在其中,有興趣才會形成學習的主動性和積極性。在數學學習中,我們把這種從自發的感性的樂趣出發上升為自覺的理性的“認識”過程,這自然會變為立志學好數學,成為數學學習的成功者。那么如何才能建立好的學習數學興趣呢?

  (1)課前預習,對所學知識產生疑問,產生好奇心。

  (2)聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。

  (3)思考問題注意歸納,挖掘你學習的潛力。

  (4)聽課中注意老師講解時的數學思想,多問為什么要這樣思考,這樣的方法怎樣是產生的?

  (5)把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸于現實生活,如角的概念、至交坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現實才能使對概念的理解切實可靠,在應用概念判斷、推理時會準確。

  方法2、建立良好的學習數學習慣。

  習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。

  方法3、有意識培養自己的各方面能力

  數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。平時注意觀察,比如,空間想象能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,并在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計“智力課”和“智力問題”比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發展。

  其它注意事項

  1、注意化歸轉化思想學習。

  人們學習過程就是用掌握的知識去理解、解決未知知識。數學學習過程都是用舊知識引出和解決新問題,當新的知識掌握后再利用它去解決更新知識。初中知識是基礎,如果能把新知識用舊知識解答,你就有了化歸轉化思想了。可見,學習就是不斷地化歸轉化,不斷地繼承和發展更新舊知識。

  2、學會數學教材的數學思想方法。

  數學教材是采用蘊含披露的方式將數學思想溶于數學知識體系中,因此,適時對數學思想作出歸納、概括是十分必要的。概括數學思想一般可分為兩步進行:一是揭示數學思想內容規律,即將數學對象其具有的屬性或關系抽取出來,二是明確數學思想方法知識的聯系,抽取解決全體的框架。實施這兩步的措施可在課堂的聽講和課外的自學中進行。

  課堂學習是數學學習的主戰場。課堂中教師通過講解、分解教材中的數學思想和進行數學技能地訓練,使高中學生學習所得到豐富的數學知識,教師組織的科研活動,使教材中的數學概念、定理、原理得到最大程度的理解、挖掘。如初中學習的相反數概念教學中,教師的課堂教學往往有以下理解:①從定義角度求3、-5的相反數,相反數是的數是_____.②從數軸角度理解:什么樣的兩點表示數是互為相反數的。(關于原點對稱的點)③從絕對值角度理解:絕對值_______的兩個數是互為相反數的。④相加為零的兩個數互為相反數嗎?這些不同角度的教學會開闊學生思維,提高思維品質。望同學們把握好課堂這個學習的主戰場。

  那么如何學好高中數學呢?

  1、記數學筆記,特別是對概念理解的不同側面和數學規律,教師為備戰高考而加的課外知識。

  2、建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。

  3、記憶數學規律和數學小結論。

  4、與同學建立好關系,爭做“小老師”,形成數學學習“互助組”。

  5、爭做數學課外題,加大自學力度。

  6、反復鞏固,消滅前學后忘。

  7、學會總結歸類。可:①從數學思想分類②從解題方法歸類③從知識應用上分類

篇4:高中數學函數核心知識點精講

  高中數學函數的概念定義域

  (高中函數定義)設A,B是兩個非空的數集,如果按某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A--B為集合A到集合B的一個函數,記作y=f(x),x屬于集合A。其中,x叫作自變量,x的取值范圍A叫作函數的定義域;

  高一數學知識點總結值域

  名稱定義

  函數中,應變量的取值范圍叫做這個函數的值域函數的值域,在數學中是函數在定義域中應變量所有值的集合

  高一數學知識點總結常用的求值域的方法

  (1)化歸法;(2)圖象法(數形結合),

  (3)函數單調性法,

  (4)配方法,(5)換元法,(6)反函數法(逆求法),(7)判別式法,(8)復合函數法,(9)三角代換法,(10)基本不等式法等

  高一數學知識點總結關于函數值域誤區

  定義域、對應法則、值域是函數構造的三個基本“元件”。平時數學中,實行“定義域優先”的原則,無可置疑。然而事物均具有二重性,在強化定義域問題的同時,往往就削弱或談化了,對值域問題的探究,造成了一手“硬”一手“軟”,使學生對函數的掌握時好時壞,事實上,定義域與值域二者的位置是相當的,絕不能厚此薄皮,何況它們二者隨時處于互相轉化之中(典型的例子是互為反函數定義域與值域的相互轉化)。如果函數的值域是無限集的話,那么求函數值域不總是容易的,反靠不等式的運算性質有時并不能奏效,還必須聯系函數的奇偶性、單調性、有界性、周期性來考慮函數的取值情況。才能獲得正確答案,從這個角度來講,求值域的問題有時比求定義域問題難,實踐證明,如果加強了對值域求法的研究和討論,有利于對定義域內函的理解,從而深化對函數本質的認識。

  高一數學知識點總結“范圍”與“值域”相同嗎?

  “范圍”與“值域”是我們在學習中經常遇到的兩個概念,許多同學常常將它們混為一談,實際上這是兩個不同的概念。“值域”是所有函數值的集合(即集合中每一個元素都是這個函數的取值),而“范圍”則只是滿足某個條件的一些值所在的集合(即集合中的元素不一定都滿足這個條件)。也就是說:“值域”是一個“范圍”,而“范圍”卻不一定是“值域”。

篇5:高中數學函數核心知識點精講

篇5:高中數學函數核心知識點精講

  冪函數

  冪函數定義:

  形如y=x^a(a為常數)的函數,即以底數為自變量冪為因變量,指數為常量的函數稱為冪函數。

  定義域和值域:

  當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大于0時,函數的值域總是大于0的實數。在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域。

  性質:

  對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。

  當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:

  排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數;

  排除了為0這種可能,即對于x<0和x>0的所有實數,q不能是偶數;

  排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。

  總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:

  如果a為任意實數,則函數的定義域為大于0的所有實數;

  如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。

  在x大于0時,函數的值域總是大于0的實數。

  在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。

  而只有a為正數,0才進入函數的值域。

  由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況。

  可以看到:

  (1)所有的圖形都通過(1,1)這點。

  (2)當a大于0時,冪函數為單調遞增的,而a小于0時,冪函數為單調遞減函數。

  (3)當a大于1時,冪函數圖形下凹;當a小于1大于0時,冪函數圖形上凸。

  (4)當a小于0時,a越小,圖形傾斜程度越大。

  (5)a大于0,函數過(0,0);a小于0,函數不過(0,0)點。

  (6)顯然冪函數無界。

篇6:高中數學函數核心知識點精講

  指數函數的一般形式為,從上面我們對于冪函數的討論就可以知道,要想使得x能夠取整個實數集合為定義域,則只有使得

  如圖所示為a的不同大小影響函數圖形的情況。

  可以看到:

  (1)指數函數的定義域為所有實數的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮。

  (2)指數函數的值域為大于0的實數集合。

  (3)函數圖形都是下凹的。

  (4)a大于1,則指數函數單調遞增;a小于1大于0,則為單調遞減的。

  (5)可以看到一個顯然的規律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數的曲線從分別接近于Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

  (6)函數總是在某一個方向上無限趨向于X軸,永不相交。

  (7)函數總是通過(0,1)這點。

  (8)顯然指數函數無界。

  奇偶性

  注圖:(1)為奇函數(2)為偶函數

  1.定義

  一般地,對于函數f(x)

  (1)如果對于函數定義域內的任意一個x,都有f(-x)=-f(x),那么函數f(x)就叫做奇函數。

  (2)如果對于函數定義域內的任意一個x,都有f(-x)=f(x),那么函數f(x)就叫做偶函數。

  (3)如果對于函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數f(x)既是奇函數又是偶函數,稱為既奇又偶函數。

  (4)如果對于函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數f(x)既不是奇函數又不是偶函數,稱為非奇非偶函數。

  說明:①奇、偶性是函數的整體性質,對整個定義域而言

  ②奇、偶函數的定義域一定關于原點對稱,如果一個函數的定義域不關于原點對稱,則這個函數一定不是奇(或偶)函數。

  (分析:判斷函數的奇偶性,首先是檢驗其定義域是否關于原點對稱,然后再嚴格按照奇、偶性的定義經過化簡、整理、再與f(x)比較得出結論)

  ③判斷或證明函數是否具有奇偶性的根據是定義

  2.奇偶函數圖像的特征:

  定理奇函數的圖像關于原點成中心對稱圖表,偶函數的圖象關于y軸或軸對稱圖形。

  f(x)為奇函數《==》f(x)的圖像關于原點對稱

  點(x,y)→(-x,-y)

  奇函數在某一區間上單調遞增,則在它的對稱區間上也是單調遞增。

  偶函數在某一區間上單調遞增,則在它的對稱區間上單調遞減。

  3.奇偶函數運算

  (1).兩個偶函數相加所得的和為偶函數.

  (2).兩個奇函數相加所得的和為奇函數.

  (3).一個偶函數與一個奇函數相加所得的和為非奇函數與非偶函數.

  (4).兩個偶函數相乘所得的積為偶函數.

  (5).兩個奇函數相乘所得的積為偶函數.

  (6).一個偶函數與一個奇函數相乘所得的積為奇函數.

篇7:高中數學函數核心知識點精講

篇7:高中數學函數核心知識點精講

高中三角函數知識點大全 高中數學三角函數

三角函數是六類基本初等函數之一,是以角度(數學上最常用弧度制,下同)為自變量,角度對應任意角終邊與單位圓交點坐標或其比值為因變量的函數。也可以等價地用與單位圓有關的各種線段的長度來定義。三角函數在研究三角形和圓等幾何形狀的性質時有重要作用,也是研究周期性現象的基礎數學工具。在數學分析中,三角函數也被定義為無窮級數或特定微分方程的解,允許它們的取值擴展到任意實數值,甚至是復數值。

高中三角函數知識點——銳角三角函數公式

sin α=∠α的對邊 / 斜邊

cos α=∠α的鄰邊 / 斜邊

tan α=∠α的對邊 / ∠α的鄰邊

cot α=∠α的鄰邊 / ∠α的對邊

高中三角函數知識點——倍角公式

Sin2A=2SinA?CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

(注:SinA^2 是sinA的平方 sin2(A) )

高中三角函數知識點——三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a = tan a · tan(π/3+a)· tan(π/3-a)

高中三角函數知識點——三倍角公式推導

sin3a

=sin(2a+a)

=sin2acosa+cos2asina

高中三角函數知識點——輔助角公式

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

高中三角函數知識點——降冪公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

高中三角函數知識點——半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

sin^2(a/2)=(1-cos(a))/2

cos^2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

高中三角函數知識點——三角和

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

高中三角函數知識點——兩角和差

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

高中三角函數知識點——和差化積

sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

高中三角函數知識點——積化和差

sinαsinβ = [cos(α-β)-cos(α+β)] /2

cosαcosβ = [cos(α+β)+cos(α-β)]/2

sinαcosβ = [sin(α+β)+sin(α-β)]/2

cosαsinβ = [sin(α+β)-sin(α-β)]/2

高中三角函數知識點——萬能公式

sinα=2tan(α/2)/[1+tan^(α/2)]

cosα=[1-tan^(α/2)]/1+tan^(α/2)]

tanα=2tan(α/2)/[1-tan^(α/2)]

篇8:高中數學函數核心知識點精講

高中數學知識點之特殊角的三角函數值表整理

高中數學是很多都頭疼的科目之一,尤其是特殊角的三角函數數值表,所以有途網小編整理了一些關于高中數字知識點整理,供大家參考,希望對大家有所幫助。

高中數學知識點——兩角和與差的三角函數

sin(a+b)=sin a cos b +cos a sin b

cos(a+b)=cos a cos b -sin a sin b

sin(a-b)=sin a cos b -cos a sin b

cos(a-b)=cos a cos b +sin a sin b

tan(a+b)=(tan a +tan b )/(1-tan a tan b )

tan(a-b)=(tan a -tan b )/(1+tan a tan b )

α=18°(π/10) sinα=(√5-1)/4 cosα=√(10+2√5)/4 tαnα=√(25-10√5)/5

cscα=√5+1 secα=√(50-10√5)/5 cotα=√(5+2√5)

α=36°(π/5) sinα=√(10-2√5)/4 cosα=(√5+1)/4 tαnα=√(5-2√5)

cscα=√(50+10√5)/5 secα=√5-1 cotα=√(25+10√5)/5

α=54°(3π/10) sinα=(√5+1)/4 cosα=√(10-2√5)/4 tαnα=√(25+10√5)/5

cscα=√5-1 secα=√(50+10√5)/5 cotα=√(5-2√5)

α=72°(2π/5) sinα=√(10+2√5)/4 cosα=(√5-1)/4 tαnα=√(5+2√5)

cscα=√(50-10√5)/5 secα=√5+1 cotα=√(25-10√5)/5

通過比較可發現與黃金三角形相關的三角函數值有很強的對稱性

這些數值的證明可以借助黃金三角形中的比例

高中數學知識點——三角函數

α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

延伸閱讀
搜索教員
主站蜘蛛池模板: 山东| 化德县| 菏泽市| 银川市| 全南县| 祁阳县| 叶城县| 泰州市| 昌都县| 汨罗市| 新邵县| 黔东| 鄂尔多斯市| 惠东县| 中宁县| 南部县| 孟津县| 武清区| 济宁市| 金平| 武邑县| 云梦县| 秀山| 澜沧| 宁夏| 临泽县| 依安县| 阿拉善盟| 香河县| 鹿邑县| 龙江县| 乌兰浩特市| 嫩江县| 博野县| 象州县| 鹰潭市| 进贤县| 威远县| 济宁市| 洪泽县| 宁明县|